Nanomechanical characterization of polymer using atomic force microscopy and nanoindentation

نویسندگان

  • Te-Hua Fang
  • Win-Jin Chang
  • Sung-Lin Tsai
چکیده

The nanomechanical characteristics of polycarbonate (PC) polymer were investigated by atomic force microscope (AFM) and nanoindentation. Scratching, wear properties, hardness and Young’s modulus were obtained. The relationships between scribing feed and speed, surface depth and roughness and applied load were also investigated. The results indicated that as the applied load was increased, the furrow depth and the surface roughness increased. When the scribing feed was increased, the depth and roughness decreased. Increasing the furrow speed also decreased the surface roughness. The applied load is more significant than the scribing speed on the material removal rate. In addition, the Young’s modulus and hardness of the polycarbonate material were 1.8 and 0.2 GPa, respectively. q 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films

This study reports the surface roughness and nanomechanical characteristics of ZnO thin films deposited on the various substrates, obtained by means of atomic force microscopy (AFM), nanoindentation and nanoscratch techniques. ZnO thin films are deposited on (aand c-axis) sapphires and (0001) 6H-SiC substrates by using the pulsed-laser depositions (PLD) system. Continuous stiffness measurements...

متن کامل

Mechanical characterization of polymers on a nanoscale through AFM nanoindentation: A theoretical study on the time-dependent viscoelastic recovery

The temperature-dependent indent recovery of polymer materials was measured by atomic force microscopy (AFM). A numerical model based on the Boussinesq equations was developed to simulate the viscoelastic indent recovery. Viscoelastic solution of stress and displacement is obtained by using the corresponding principle between elasticity and viscoelasticity. The numerical solution provides resul...

متن کامل

Atomic Force Microscope Nanoindentations to Reliably Measure the Young’s Modulus of Soft Matter

The analysis of nanomechanical properties is becoming an increasingly useful tool in a large variety of fields, ranging from biology to polymer science. The Atomic Force Microscope, AFM, can bridge the information about morphology, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e. the plot of voltage output ...

متن کامل

Nanomechanical Properties of Cementitious Materials

Nanomechanical Properties of Cementitious Materials Paramita Mondal Although cementitious construction materials are mainly used in a large scale and in huge quantities, fundamental properties such as strength, ductility, creep, shrinkage, and fracture behavior depend, to a great extent, on structural elements and phenomena which are effective at the microand nanoscale. This research involves c...

متن کامل

Application of instrumented nanoindentation in preformulation studies of pharmaceutical active ingredients and excipients.

Nanoindentation allows quantitative determination of a material's response to stress such as elastic and plastic deformation or fracture tendency. Key instruments that have enabled great advances in nanomechanical studies are the instrumented nanoindenter and atomic force microscopy. The versatility of these instruments lies in their capability to measure local mechanical response, in very smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Journal

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2005